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We study the turbulence transition of plane Couette flow in large domains where
localized perturbations are observed to generate growing turbulent spots. Extending
previous studies on the boundary between laminar and turbulent dynamics we
determine invariant structures intermediate between laminar and turbulent flow.
In wide but short domains we find states that are localized in spanwise direction,
and in wide and long domains the states are also localized in downstream direction.
These localized states act as critical nuclei for the transition to turbulence in spatially
extended domains.

1. Introduction
In fluids heated from below (Rayleigh–Bénard convection) or in centrifugally

unstable situations (Taylor–Couette flow) (Koschmieder 1993) the transition to
turbulence proceeds through sequences of bifurcations that add spatial and temporal
degrees of freedom to the flow until eventually the complex spatio-temporal dynamics
which characterizes turbulent motion is reached. Such a scenario, similar in spirit to
the ideas of Landau (1944) but different in detail, does not apply to several important
flows like pressure driven flow down a circular pipe (Reynolds 1883) or plane Couette
flow (Schmid & Henningson 1999; Eckhardt et al. 2007), since already the first
step of the classical scenario, the linear instability of the laminar profile, is missing.
Accordingly, triggering turbulence in these linearly stable flows requires that both the
flow rate and the strength of an applied perturbation exceed critical levels (Boberg &
Brosa 1988; Grossmann 2000). Several experimental (Darbyshire & Mullin 1995;
Dauchot & Daviaud 1995; Bottin et al. 1998; Hof, Juel & Mullin 2003; Peixinho &
Mullin 2007) and numerical studies (Schmiegel & Eckhardt 1997; Meseguer 2003;
Schneider, Eckhardt & Yorke 2007; Eckhardt et al. 2008) have focused on the required
minimal perturbations and have identified a very sensitive dependence of the critical
amplitudes on both the spatial structure of a perturbation and on the flow rate.

From a dynamical systems point of view, the coexistence of the stable laminar
profile with turbulent dynamics implies that there is a boundary in the state space of
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the system which separates perturbations that return to the laminar profile from those
that become turbulent (Eckhardt et al. 2002, 2007). The sensitive dependence on initial
conditions results in a fractal and convoluted boundary which was termed edge of
chaos (Skufca, Yorke & Eckhardt 2006; Schneider et al. 2007; Vollmer, Schneider &
Eckhardt 2009). It generalizes the more familiar basin boundary to situations where
turbulence seems to be transient (Hof et al. 2006). Despite its intricate geometry the
edge is locally formed by the stable manifold of an invariant dynamical object called
edge state. By definition, the edge state corresponds to a self-sustained non-laminar
and non-decaying flow field of critical energy. Its stable manifold is of codimension
one per construction and defines locally the stability boundary. Therefore, the edge
state together with its stable manifold determines minimal seeds for turbulence.

Both the exact solutions that have been linked to turbulent dynamics (Nagata
1990; Clever & Busse 1997; Waleffe 2003; Eckhardt et al. 2008) and the edge states
(Wang, Gibson & Waleffe 2007; Duguet, Willis & Kerswell 2008; Schneider et al.
2008) which guide the transition have been studied in small computational domains
subject to periodic boundary conditions. Thus, they focus on the temporal degrees
of freedom but cannot capture large scale spatial phenomena such as the growth of
turbulent regions or the coexistence of turbulent and non-turbulent patterns observed
in spatially extended systems. The spatial dynamics of extended flow systems shows up
in transition experiments where the homogeneously driven flow is locally perturbed
by a jet injection (Bottin et al. 1998) or a small obstacle (Bottin, Dauchot & Daviaud
1997): in such cases one first observes a localized turbulent region which then starts
to spread out (Emmons 1951). The spatially extended edge states cannot explain
these phenomena, since they would require that the perturbation exceeds the critical
threshold everywhere in space, in contrast to the experimental evidence. Studies on
pipe flow, both in a model (Willis & Kerswell 2009) and in the fully resolved direct
numerical simulations (Mellibovsky et al. 2009) have identified an edge state that is
localized along the axis. In the present study we apply these ideas and tools to the case
of plane Couette flow, where there are two directions of spatial extension, streamwise
and spanwise. Using direct numerical simulations we show that these edge states
can be localized in one or both directions, thereby confirming the expectation that a
localized perturbation should be sufficient to nucleate turbulence. Moreover, we find
tantalizing similarities to observations in typical pattern forming systems (Knobloch
2008). During the completion of this work we became aware of related studies by
Duguet, Schlatter & Henningson (2009).

2. Edge states in wide Couette systems
As usual, we define the Reynolds number for plane Couette flow as Re = u0d/ν,

where u0 is half the velocity difference between the two plates, d is half the gap width
and ν the viscosity of the fluid. In the following all lengths will be given in units of
d . The system is translationally invariant in both the streamwise (x) and spanwise (z)
direction. The laminar linear flow profile is stable against infinitesimal perturbations
for all Re (Schmid & Henningson 1999). In the turbulent case the translational
symmetries are broken: localized turbulent patches of irregular shapes and various
sizes which are surrounded by laminar regions can be observed for Re above about
320 (Bottin et al. 1998). The system also allows for more ordered patterns of turbulent
stripes which arise for a small range of parameters near Re =400 and were reproduced
in numerical simulations (Prigent et al. 2002; Barkley & Tuckerman 2005). For these
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Re localized perturbations are observed to generate localized turbulent spots that
invade the surrounding laminar flow (Bottin et al. 1998).

As in previous studies in small periodic domains, we determine the edge state
by numerically tracking the evolution of velocity fields which neither become fully
turbulent nor decay to laminar flow but remain in regions intermediate between these
two types of dynamics (Itano & Toh 2001; Skufca et al. 2006; Schneider et al. 2007;
Vollmer et al. 2009). For the numerical simulation we use the Fourier–Chebyshev-tau
scheme (Canuto et al. 1990) as implemented by Gibson (2004) with a resolution
of 33 modes in normal direction. In the other directions, we adjust the number of
modes when varying the size of the domain so that we keep 16/π modes per length
in the spanwise and 4/π or 8/π modes per length in the downstream direction.
With these numbers of modes the energy in the modes drops below 10−5 times the
maximal value at about two-thirds of the highest wavenumbers. Moreover, with the
asymmetric choice of resolution in spanwise and streamwise direction the energies
for comparable mode numbers are similar (see Marinc 2008). One might expect that
computing localized edge states requires a control not only on the perturbation energy
but also on the spatial extension of a flow structure. However, as became clear in
hindsight and will be demonstrated below, the evolution of these states is such that
no additional control is needed and that the numerical algorithm described before
(Schneider et al. 2008; Schneider & Eckhardt 2009) can be used without modification.

A domain that is 2π wide and 4π long suffices to support turbulent dynamics
and is close to optimal for the appearance of coherent structures (Clever &
Busse 1997; Waleffe 2003). We first focus on Re = 400, keep the length of the
reference domain fixed and extend its width to 8π and then 16π. In contrast to
the case of the small domain, where a non-localized state has been found, the
edge tracking algorithm now converges to a state that is localized in the spanwise
direction, as shown in figure 1(b). This state is not symmetric under reflection
on the mid-plane and hence is not stationary but a travelling wave that moves
with a phase speed cx of 6.9 × 10−3u0 downstream. There exists a reflected partner
travelling in the opposite direction. In the core region the state is dominated by
pairs of downstream vortices that induce alternating high- and low-speed streaks.
The topology is similar to the three-dimensional state described by (Nagata 1990;
Clever & Busse 1997; Waleffe 2003) and the non-localized edge state in small domains
(Schneider et al. 2008), reproduced here periodically repeated for the wider domain
in figure 1(c). The state in figure 1(a) is a stationary localized state discussed further
below.

The eigenvalue spectrum shown in figure 2(a) confirms the conclusion drawn from
the convergence of the edge state tracking, namely that the stable manifold is of
codimension one. The variation of the total energy content with the box width shown
in figure 2(b) confirms the localization properties: the energy first increases but then
settles to an essentially constant value once the width exceeds 7π. This confirms that
the properties are intrinsically controlled by the dynamics and not induced by the
boundaries.

Using a Newton method, the travelling waves can be pinned and followed to
different Reynolds numbers. The kinetic energy in figure 3(a) and the spanwise size
as determined from a Gaussian fit, ∝ exp(−x2/σ 2), in figure 3(b) show that the
solution is spatially extended for low Re, localizes as Re increases and reaches a
constant width beyond Re ≈ 250. The state’s phase velocity (figure 3c) first deviates
from zero at Re ≈ 150 and oscillates with Re. The next to leading eigenvalue is shown
in figure 3(d ): its real part becomes negative for Re slightly above 200 and confirms
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Figure 1. Symmetric (a), antisymmetric (b) and extended state (c) in plane Couette flow
for Re = 400. Shown are downstream averages of the in-plane velocity components (arrows)
and the downstream component (colour coded relative to the mean profile, blue regions
are slower, red regions faster than the mean profile). The range of the velocity components
reflected in the colours and lengths of arrows are −0.7 <ux < 0.7, −0.019 <uy < 0.019, and
−0.062 <uz < 0.062. (a) The velocity field that is symmetric with respect to a rotation around
the centre and therefore corresponds to a stationary state. (b) The velocity field that is reflection
symmetric along a line z = const , but not along a line y = 0. It does not represent a stationary
state but a travelling wave. (c) The periodically continued edge state obtained from smaller
domains. Note that the spanwise wavelength of the localized state is a bit shorter than the one
for the extended state.

that the stable manifold of the travelling wave is of codimension one and that it is
an edge state.

The presence of two locally attracting travelling waves on the edge calls for an
explanation of how their stable manifolds and the two local boundaries between
laminar and turbulent dynamics which they define can be sewed together. The
simplest explanation (following the bifurcation scenarios discussed by Vollmer et al.
2009) requires the existence of a relative saddle in the edge which has an unstable
direction pointing to either of the states. The broken up–down symmetry of the
travelling waves then suggests that such a state should be symmetric. A Newton
search starting from a suitably tailored initial condition indeed converges to the
symmetric and stationary state shown in figure 1(a). Its eigenvalue spectrum shows
the second unstable eigenvalue required to connect it to the travelling waves via a
symmetry breaking bifurcation. Indeed, following both the travelling wave and the
stationary state down to a Reynolds number close to 150.2, they merge. However, when
approaching this point, the widths of the states increase (cf. figure 3), until they extend
over the full domain near the bifurcation point. This is documented in figure 4, where
we characterize the states using a specially tailored measure of the energy content.
The quantity Σ is calculated from the energy difference between the state and its
mirror image in the spanwise direction so that it amplifies the difference between the
two localized states and shows the reduction in energy when they become localized.
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Figure 2. Properties of the edge state at Re = 400. (a) Re λ and Im λ, the real and imaginary
parts of the eigenvalues. One finds one unstable eigenvalue with positive real part, two
neutral eigenvalues λ= 0 related to the continuous translational symmetries in downstream
and spanwise direction and several stable real and complex eigenvalues. (b) The energy of
the edge state as a function of the domain width Lz: the approach of a constant value for
sufficiently large Lz indicates the converge to a state that is independent of the width Lz.
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Figure 3. Properties of edge state for different Reynolds numbers Re. (a) The energy and
(b) the width σ in a Gaussian approximation to the envelope ∝ exp(−x2/σ 2). Both quantities
approach constants for Re above about 250. (c) The phase velocity cx; it oscillates with Re
and vanishes near Re = 220 and 480. The upper and lower curve belong to symmetry related
states. (d ) The real part of the next to leading eigenvalues λ2. It crosses from unstable (for
small Re) to stable (for larger Re) near Re = 200. The data points are connected by lines to
guide the eye.

One notes that as the Reynolds number is reduced, all three solutions converge
near Re = 150.2, showing that both the symmetric and antisymmetric localized state
emerge out of the spatially extended equilibrium.

Similar localization phenomena have been observed in homoclinic snaking scenarios
(Burke & Knobloch 2007; Knobloch 2008; Dawes 2009). The similarities in
phenomenology are remarkable, and become particularly clear when the flow
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Figure 4. Bifurcation diagram for the localized travelling wave and the stationary state. The
projection is defined by Σ = 〈�u2〉x,y,z − 12〈|〈�u2〉x,z(y) − 〈�u2〉x,z(−y)|〉y . The different states are
indicated with profiles of the z-dependent downstream velocities, averaged in downstream and
wall-normal direction.

variations in downstream direction are averaged out and only the downstream
velocities averaged in x and y are shown: According to the symmetries of the
full three-dimensional velocity fields the averaged velocities come in patterns of either
reflection or a point mirror symmetry, as shown in the profiles next to the curves in
figure 4. Remarkably, the localized patterns in the one-dimensional Swift–Hohenberg
model with cubic-quintic nonlinearity show the same symmetries (Burke & Knobloch
2007; Knobloch 2008; Dawes 2009). We also noticed that the states in the Swift–
Hohenberg model and the ones obtained here can be scaled and superimposed to look
almost identical: while such a quantitative agreement cannot be expected because of
the different form of the equations from which they are obtained, it does underline the
strong similarities between the two systems, thereby pointing to a similar localization
mechanism.

3. Edge states in wide and long domains
Turning to domains that are 2π wide but much longer than 4π we find edge states

that are localized in the downstream direction. However, their length falls off rather
slowly, so that for Re = 400, where the length is about 60–80, boxes of a length 64π
had to be used before localization could be seen (Marinc, Schneider & Eckhardt
2009). As in the wide box this edge state is dominated by streaks but it is neither a
fixed point nor a travelling wave but shows constant internal dynamics similar to the
chaotic edge state found in pipe flow (Schneider et al. 2007). Also the localization
in downstream direction is not unlike the one seen in models and in full numerical
simulations for pipe flow (Willis & Kerswell 2009; Mellibovsky et al. 2009).

Increasing both the width and length of the computational domain to 128 times the
area of the reference domain, the edge tracking algorithm converges to a structure
that is fully localized in spanwise and streamwise direction. Figure 5(a) shows the
localized state for a domain with Lx = 64π and Lz = 16π. Most of the energy density
of the perturbation is concentrated within a length of 20 and a width of 5 as measured
by the variance of the averaged kinetic energy distribution. The visual appearance
including the tails of the structures is a bit larger, about 80 × 20. The localized state



Localized edge states in plane Couette flow 447

x

x

�
u→

2
�

y′
z(

x)

100500–50–100
z

20100–10–20

0.1

0.01

0.001

10–4

10–5

20 40 60 80 100 120 140 160 180 2000

10

20

30

40

50

z

(a)

(b)

�
u→

2
�

x′
y(

z)

0.1

0.01

0.001

10–4

10–5

(c)

0

0.7

–0.7

Figure 5. Localized turbulence seed at Re = 400. (a) The streamwise velocity in the y = 0
plane, emphasizing the streaky structures. in space and energy, and their fairly slow dynamics.
The bottom frames highlight the localization in downstream (b) and spanwise (c) directions,
by showing the energy averaged over the transverse directions. Shown are two results for two
different box sizes: the central parts are similar and the larger boxes allow to follow the drop
in energy further down. Note that the localization is exponential in the downstream direction
and faster than exponential in the spanwise direction.

shows a streaky structure and combines the localization features observed in long but
narrow and in short but wide domains: it is exponentially localized in streamwise
direction (figure 5b) and super exponentially in spanwise direction (figure 5c). The
overlap of the data shows that both spatial extensions and energy distributions are
dynamically selected and independent of the size of the computational domain.

The fully localized edge state is not stationary or a travelling wave but shows
chaotic temporal and spatial variations. As for the edge states identified in short
segments of pipe flow (Schneider & Eckhardt 2006; Schneider et al. 2007), the mild
chaotic variations can be clearly distinguished from turbulence because of their limited
variability in space and energy, and their fairly slow dynamics.

The significance of the localized edge state lies in their finite size which defines
the length, width and topology of marginally self-sustained perturbations. They are
the smallest self-sustained structures away from the laminar profile and are critical
in the sense that weaker perturbations will decay and stronger ones will increase to
become turbulent. In the full state space of the system it is their stable manifold that
separates laminar from turbulent dynamics. Interestingly, the size of this edge state is
also very close to the minimal spot size required to stimulate growth at constant front
velocity determined experimentally in (Tillmark & Alfredsson 1992): their figure 9
shows linear growth for spots with a half widths of 10 and a length of 25.

The dynamical relevance of these localized edge states for the transition is further
clarified in figure 6 where the evolution from an edge state into a turbulent spot
is presented. As the flow becomes turbulent the time traces of the spatial extension
(length and width) and of the energy density stored in the perturbation field reveal
two stages of the transition process: First, the energy increases while maintaining the
size of the spot, and only once the interior has reached turbulence level does it start to
grow in width and length. Thus, the structure has to become turbulent locally before it
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Figure 6. Mean amplitude Et , height and width characterized by the variances Vx and Vz

of the averaged energy distribution of a spot near the edge of chaos which swings up to
turbulence. Note that the spot does not grow in size until the growth in amplitude is nearly
finished.

can start to fill the domain. A similar behaviour was found for the edge states in long
pipes (Mellibovsky et al. 2009). Incidentally, this property of the localized structures
explains why they can be detected and determined by monitoring the energy only:
the alternative path by which energy could increase, namely by spreading in space
while keeping the local energy density of the edge state constant, does not happen.

4. Conclusions
We have computed the energetically minimal self-sustained perturbations in

extended plane Couette flow and shown that they are spatially localized. These
states are naturally related to earlier turbulence transition studies in which localized
perturbations of a fixed type were used to generate growing turbulent spots
(Tillmark & Alfredsson 1992; Dauchot & Daviaud 1995). These experimental results
together with the numerical studies in (Lundbladh & Johansson 1991) show that
a perturbation has to exceed a critical amplitude in order to generate a constantly
growing spot. Remarkably, these studies also suggest that the critical perturbations
are dominated by downstream vortices of size and topology very similar to the edge
state shown in figure 5. This further supports the significance of localized edge states
as nuclei for the transition dynamics.

The internal dynamics of the localized edge states can be complicated: in a wide
but short domain they are travelling waves (cf. figure 1) of a topology similar to the
non-localized edge states found in small periodically continued domains. In a wide
and long domain the critical state is temporally active but shows a very limited spatial
complexity when compared to a turbulent flow field. These observations together with
the two-dimensional map studied in Vollmer et al. (2009) suggest that the relative
attractor in the edge can be as simple or as complicated as a regular attractor in the
full state space.

The localization properties discussed here introduce a new length scale to the
system: comparing the observations of localized critical structures in plane Couette
flow and pipe flow one notes that in both cases the structures have a localization
length that is much larger than the intrinsic structures of the edge states in the small
domain, but that is shorter than the diameter of turbulent patches. In principle, models
of front dynamics (e.g. Schumacher & Eckhardt 2001 and references therein) could
help here, but their derivation starting from the Navier–Stokes equation remains a
challenge.
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At Reynolds numbers above 2000 Ehrenstein, Nagata & Rincon (2009) have
identified a remarkable class of two-dimensional localized states. Since the present
states are fully three-dimensional, the connection to them is not clear but point to
complicated, symmetry dependent connections in the edge that remain to be explored.

Aspects of the spatial evolution of turbulent patches in spatially extended systems
have been considered by Pomeau (1986), who suggested that the transition could
have similarities to nucleation phenomena in first order equilibrium phase transitions
(Becker 1966). It is well known that in such cases a sufficiently strong perturbation
is needed to induce the transition from one phase to the other. For instance, water
droplets in a saturated water vapour dissolve if they are too small, and grow rapidly
once they are sufficiently big. The same behaviour can be observed in the localized
structures discussed here: if they are too weak or too small, they decay and only
if they exceed the relevant thresholds they increase and spread. Pomeau (1986) and
Manneville (2009) proposed that there should be an appropriate non-equilibrium
generalization of the equilibrium phase-transition problem. The localized edge states
shown here seem to be this non-equilibrium equivalent of the critical size droplets,
and could be important for other aspects of the spatio-temporal dynamics in large
domain turbulence as well.

The work presented here is based on the diploma thesis of Daniel Marinc (2008).
Parts of the results were previously presented at the Newton Institute ‘Workshop on
Wall bounded shear flows’, Cambridge, September 8–12, 2008, the 7th ERCOFTAC
SIG33 Workshop ‘Open issues in transition and flow control’, Genua, October 16–18,
2008 and the 7th IUTAM Symposium on Laminar-Turbulent Transition, Stockholm,
June 23–26, 2009. We thank the participants of these meetings for discussion and the
Deutsche Forschungsgemeinschaft for support.
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